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IMAGE UNDERSTANDING AND INFORMATION EXTRACTION

Research Summary

This report summarizes our research progress during the period February
| to April 30, 1976, in Image Understanding and Information Extraction.

Our research objective is to achieve a better understanding of image
Structure and to use this knowledge to develop techniques for information ex-
traction from imagery. It is our hope that the results of this research will
form the basis for the development of technology relevant to military applica-
tions of machine extraction of information from aircraft and satellite imagery,

Our research projects fall into five heavily overlapping areas: Image
Segmentation, Image Attributes, Image Structure, Image Recognition Techniques,
Preprocessing, and Applications,

IMACE SEGMENTATION - We pursue two approaches to image segmentation:
edge detection, and region growing. In edge detection, the thrust of our
research is to use syntactic methods to help edge detection in noisy and blur-
red imagery. As a step along that direction, we are studying characteristics
of digital edges. Almost all Past works on digital edges and curves dealt
with the ideal situation, while we are interested mainly in real=1jfe digi-

tized !mages. Our experimental results, reported by Tang and Huang, indicate

that the properties of real-life digital stralght edges are quite different
from those of ideal edges. In the same report, a technique of recognizing
real-line digital straight edges is also presented.

A by-product of our edge detection research is a technique of accurately
estimating edge locations which holds great promise in mensuration applica-

tions. This technique, reported by Burnett and Huang, is based on the Viterbi

algorithm. It can take account of arbitrary edge profiles and film noise and

is computationally simple.



In region growing, we are studying both region merging techniques and
different similarity measures among reglons.

IMAGE ATTRIBUTES = We are doing both texture and shape analysis. A new
class of texture descriptors, the max-min descriptors, has been developed.
These descriptors are very simple to compute and perform extremely well In
various classification problems. We are currently explotting the use of max=
min descriptors in texture boundary detection and region growing.

In shape analysis, we have done extensive study on Fourier boundary
descriptors and are striving to Improve their performance. We are also devel=
oping grammars for various classes of objects of military significance, such
as airports, and tanks.

IMAGE STRUCTURE - The thrust of our research In this area is to use
syntactic methods to do scene analysis. Fu and Li report on the use of tree
grammar in detecting highways and rivers in LANDSAT imagery. Tree grammar was
also used in helping scene segmentation (Fu_and Keng).

{MAGE RECOGNITION TECHNIQUES = We pursue two topics: the use of branch
and bound techniques in solving recognition problems, and the use of context
In statistical classification. In Swaln and Yu's report, we see that the use
of context Indeed increases the classification accuracy. However, it is
computationally tedious on conventional serial computer. We are therefore
looking Into the use of the Illiac 4 (via the ARPANET).

PREPROCESSING = The aim of preprocessing is to change the image to a
form which Is more convenient for information extraction. Most images are
degraded by noise and blurring. The reduction of nolse and the sharpening of
the image generally facilitate information extraction. Several noise reduc=

tion techniques are compared by Yoo and Huang., It was found that the



synthetic highs technique works best in balancing the noise level and the edge
sharpness
APPL'", . "ONS - We are working on several applications, two of which are

reported here. Wallace and Wintz present some recent results on using Fourier

descriptors for airplane classification. Mitchell and Chen show results of

reducing cloud and haze in LANDSAT imagery using three-dimensional digital

filters,



APPLICATION OF A FINITE STATE MARKOV
PROCESS MODEL TO {MAGE MEASUREMENT

J. Burnett and T. S. Huang

l. introduction

Our last report (1] briefly mentioned the possibility of using the
Viterbi algorithm in conjunction with a finite state Markov process model for
making accurate measurements from noisy and blurred images. Here we expand
on this idea, derive the algorithm and formulas for calculating the perfor-
mance of the algorithm.

A Computer simulation of a specific photographlc imaging system shows
the algorithm to produce asymptotically efficient, and unbiased estimates of

object sizes.

Maximum A Posteriori Probability Sequence Estimation

The max imum a-posteriori probability (MAP) estimate of a sequence |
given a sequence 5_(5_belng a degraded and nolsy version of l? is defined as
a sequencel- (?‘.fz,...,?m) such that P(1]2),.% 15 2 maximum. To calculate
]_a model is needed for the relationship between | and 2z, We assume the
observation model shown in Fige 1. L= (l‘.lz,...,lm) is the sequence of
jdeal light intensities with lk the light intensity of the ksh_sample point
entering the imaging system. Each lk can assume one of G possible values
a‘,...,aG. For example l_mlght represent the sequence of reflected light
intensities from a scan line of an aerial photo of a bridge across a river.
In this case there would be two possible intensity levels: 3, corresponding
to the light reflected from the water and a, corresponding to the light
reflected from concrete (or whatever construction material was used in the

bridge). The state at position K, Ty is defined to be a set of adjacent

intensities (Ik_v,..-,lk,'k+v). Ssince each 'j can assume only a finite



nunber of values each ”k is one of a finite set [Sl' i B Sp]. Further (to
withln boundary conditions) there is a one to one correspondence between the
state sequence N and the Intensity sequence 1

The system h(*) represents the degradation of the sequence |. In the
case of photographic imagery this includes blurring due to scattering, dif=-
fraction, camera motion, etc. as well as the nonlinear relationship between
light intensity and film density. The or‘wly assumption that we make on h js
that there is a one to one correspondence between Y= (yl"'"’ym) (where
Yy = h(nk)) and n,

N is a sequence of independent noise samples. We do not rule out
dependence of the nojse Parameters on the signal, however, For example film
graln noise is approxlmately norma! with a standard deviation proportional
to the signal level.

The Algorithm

A

By deflnltlon the MAP sequence estimate dof | is
() P(_l_,g)|=;‘ is a maximum

but since there is a one to one correspondence between | and n, (1) 1s

equlvalent to

(2) P(QIQ, is a maximum

A
=n

However,
(3) P(nz) = P(Z,n)/p(z) = P(z|n) P(n)/p(z)

Due to the Markov assumption of N and the independence of the noise

M

P(n) =0 Plngg i)



M M
P(Zin) = P(z]Y) = o Pz fy,) = X Pz, [h(n,))

Thus we want to maximize
M
(%) = Py lny) Plylnln )
or equlvalent minimize

M

M
(5) FJEI - 0 Plagylng) - in Plz [h(n))) gz T(n,)
; =j

2
By assigning & cost or length of E“(rmg,’) to each branch of a trellis we can
see that the MAP estimate ﬁ represents the lowest cost or minimum length path
through the trellis.

Let rn;a be a sequence of states starting at some initial state at posi~
tion one and ending at state n at position £. In general there will be
several possible paths (or sequences mf) through the trellis that pass
through state n at position 1. Denote this set of paths by Z. Let ;n%e e
be one of these sequences but with the additlona! restrictlon that
II“(;n%) s z E‘(;nj) <T (;nf) for any other sequence mfef . (If the two paths
have equiﬂy low cost any reasonablie procedure for declding between them
will do.)

Thus ;:u;a (called the survivor sequence or survivor) is the minlmum cost
sequence or path from the fixed initial state to the state n at position £.
Now if the minimum cost complete path from position | to position m passes
through state n at position £ it must have a% as its initial segment (If it

~

did not we would replace the initial segment with w‘:l and get an even lower

cost path, a contradiction).



0f course we do not know that the minimum cost complete path pastes
through state n at position ¢, However we do know that it must pass through
one of p possible states at position 0., Thus at any position £ we only need
”~ ”~
. g . et
store at most p survivor sequences My and their costs ﬂ(nl)° To get to

position 2+] we need only extend all position 5 survivors by one unit, com=

pute the costs of the possible extensions from

N N

and for each of the p possible states Ml at position J+1 select the lowest
cost path ending in that state as the position i+l survivor. In sumary:
Storage: o (position index)

”~

it

{p such ¥ point survivor sequences)

F(m%) (costs of each of the p survivor sequences)

initialization: =0

”
ﬂg = Tig for each possible initial state

I'{n,) = =fnn_ where m_ is the a=priori probability
¢ Ty Mo
that the initial state is Mg (if known)

tf the a priori probabilities are not known then any reasonable initial
cost assignment (such as F(n0)==@ for all possible initial states n) will do.
Recursion

For each of the p possible states at position %+1 compute
Iy )
AUPRYLR. I‘(n\l) + Tlng, )

for each possible n, fing ?(W%+l) = min P(W£+]»Wg) store F(ﬁ%+l) and the



corresponding survlvor sequence. At position M there wlll be at most p
survivor sequences, one survivor sequence terminating at each permisslble
poslitlon M state. Denote by ﬁ the lowest cost of these sequences. ﬁ Is the
MAP sequence estimatz of 5,

Example. Suppose it Is known that at sample point number one the local
gray level is zero, that at positlon eight the local gray level Is three and

that someplace between these two points a step change between the levels zero

and three occurred. The degrading system is linear and shift invariant with

impulse response h-l =h°=hl =-;-. The noise is white, Gaussian with variance

02. The observed sequence Z= (-.5, +,25, +.75, -5, 2.8, 2.7, 3.3, 3.1).

The posslble states are

s, = (0,0,0) 55 = (0,3,3)
s, = (0,0,3) S, = (3,3,3)
h(s,) = 0 h(s;) = 2
h(s,) =1 h(s,) = 3

By assuming that all permissible changes of state are equally likely
-in P(”k+l|nk) terms are the same and can be ignored. Thus P(nz)-'(zz-h(n))z.
The trellis for this example is shown in Fig. 2. The permissible paths are
shown by dashed lines. The numbers are the costs of the survivor sequences to
each state. The MAP estimate is shown by a solid line, Its total cost is
1.955 and corresponds to ? = (0,0,0,0,3,3,3,3).

The minimum cost or minimum length path through a trellls problem and
varlous solution have been around for some time [2]. The algorithm presented
above (commonly called the Viterbi algorithm or VA) was presented by Viterbi

[9] as a technigue for decoding convolutional codes. The algorithm has since



been used by Forney [3] as a solution to the intersymbol interference problem.
The algorithm also has applications in text recognition [4] since it can
exploit Markov dependence in Engiish text and can be applied to scene analysis
problems [5] due to Markov relationships between objects in scenes.

The VA can be used to make measurements of objects in digitized images
providing the object whose length or width is to be measured is distinguished
from its background by abrupt changes in reflected light intensity at its
edges. A MAP sequence estimate of a scan line across the object can be cal-
cuiated and the edge locations relative to the start of estimated line can be
subtracted to produce an estimate of the size.

In the next sections formulas will be derived for predicting the per-
formance of the VA at locating edges and estimating widths,

Error Analysis for Step Edges

In the previous section we presented the VA as a possible technique for making
measurements from digitized images. The measurement technique consists of
making a MAP estimate of a scan line across the object of interest and sub~
tracting the position of the boundary points of the estimate of the scan line
to get an estimate of the width. In this section we examine the accuracy of
this technique. In particular we will calculate the probability of mislocat~
ing a step edge by |n|(n=4+i,+2,...) points. It is assumed that a change in

brightness from level a, at some initial position to level a, at position m

2

has been detected. The observed signal is blurred and roisy so that the

location of the step change between leveis a, and a, is uncertain,

2

Define an error event En by the conditions = and 'k+|n|+l= 'k+[n|+l

~

. If p is the number of states then there must

but ij# ij for k+l < j < k+|n

tnf + p-2 (|n| 2 1) state disagreements (see Fig. 3 for p=h, n=~2), If y

is the output vector corresponding to 1 and y is the vector corresponding



10

to the true sequence | then y will be decided over y If

k+|n|+t A k+|n|+t
(7) T anP(zly,))> £ &nP(z.|y,)
juk=t J'J jmk=t JJ

where t = [(P=1)/2] = largest integer < (P=1)/2

If the noise is normally distributed with zero mean and variance o® then (7)

becomes
k+|n|+t a9 kt|n|+l
(8) % (zj-vj) < I (z.-vj)
juk=t jek=t J

I S
or [lz7-¥1I® < [lz- 1|

where 2°= (zk-t""’zk’""zk* n +t)

i = (yk't’...’yk‘.'t‘.'lﬂl)
18 (Yk-t’...’yk'.'t'.'lnl)
The vectors 2; Y; Y“can be viewed as three points in |n|+2t+i dimensional

space that define a plane (see Fig. 5).

Define <Z,Y> = il- L 25y, = fl. Now the condition for deciding Y over
J
Y becomes
I A~ A

TIV=VIT [<YEZ¥-73 < <¥2Z7Y75]

(the reason for the normalization by ||Y=Y|| wiil be obvious shortly)

'ﬁ—"ﬁ [GED - GED < Y25 - <yes]
Y=Y

A A ~
oo UL - 2 < wpss - <oy
Y=y



-t

<y’%- yY? '\\(‘- %> <y’- \’(\‘ Y- 2>
(9) = == = e =
Y - v*f] Hy” - ¥°||

A
Thus an error will occur in deciding between Y“and Y’whenever the distance from

A Pl
Z" to Y’along the LS ZT axis is less than the distance from Z"to Y along the
€ &L ——— & &0 T
Yy - ¥yl n
L Y-y
same axis. Since Z'= Y'+ N'the projection of Z°- Yon TT——-arw]is determined
L il

by the projection of the noise N on the axis. This projection is a linear
combinatlon of normal random variables with zero mean and variance 02 and hence
is also a normal random variable with zero mean and (due to the normalization
by ||Y-;||) variance 02. Therefore the probability that if will be deccidedover
the correct path Y is the probability that a normal random variable exceeds
half the distance between if and Y, With T = Y- ;ﬂl then

iff e-n/202

o0 ]
T Y 210

-
2

(10) Prob (decide Y over Y*) dn

Y5
= Q(EE? "
Now Y = ; = (I - ?) * h (assuming a lirear and shift invariant degradation)
~
| -1 = (0,0,0,4,A,4,0,0)

where A = +(a, - a,)
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A )
Let Uj (K) be the unit step response of h. Then [[¥*- ¥*|P = ||y - Y| |2
-} .-
g (vJ vj) -T

M PN
2 3 2
T I 001 % h)

n
k+|n|+t
=02 5, oK) = U, G002
juket
In|+t
) =2 "X () - vy e fa))7?
juet

For any value of n there are “wo possible edge locatlons estimates that

are |n| points In error corresponding to location estimates that are n points

before and n points after the correct location. Thus the probablilty of an

error event for step edges with known levels Is
Tn
(12) P(E)) = 20(zD)

where T Is given by (1),

Thus far we have only consldered the case of constant nolse variance.

However, for some types of noise such as ¥1im graln the varlance of the nolse

varles with the signal.
Conslider agaln the problem of trylng to locate a step edge between levels

a; and a, but now assume that the noise variance of the 2th sample 05 depends
L

on y,. Equation (7) becomes

k+|n|+t a9 o kt|n|+t
(13) I =tn (/27 0a ) = (2,-y.)%/26% > I “WnvIno
jeke=t Y; JJ v, Jeket Y;

N2, 2
= (zj Yj) /Zoyj

or In an obvious notatlon
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(W) Jlz- ¥ [l 0% < ||z ¥ l0% +ca
;, b/ yy

a .

where C. =1 An GLL R
Yy i

The exact probability of deciding ; over Y can be calculated from (14)
by a procedure given in [6] though it is very difficult and will not be con=
sidered here. However, one observation should be made. if Qn is the path
through the trellis that mislocates the edge by +n points and ;-n the path that

mislocates the edge by -n points then in general ¢~  # C° and
Y,Y  YenY

Y’ ||03 + Therefore the probability that Y is chosen

." Ld 2 L4
2=y 1? 11z,
n -n

~

over Y will not be the same as the probability that !-n is chosen over Y.
This lack of equality between Pr(n=c) and Pr(n=-a) causes the random variable
n to have a nonzero mean value which introduces a hias in the edge location
estimate. Since En = IaPr(n=a) and since Pr(n=a) decreases with increasing
signal to noise ratio ?SNR) the bias will decrease with increasing SNR,
Further the decision boundaries (and hence the bias) among the various
possible paths are determined by the variances osj which in turn are deter-
mined by the possible levels ap a, and the degrading function h., Thus the
probability of mislocating the edge by n points (and hence the bias) is
independent of the samnle point at which the edge occurred,

If the SNR is high enough the bias can probably be ignored. If the SNR
is low the bias can be calculated by the procedure mentioned earlier or found

experimentally by computer simulation.

Extension to Pulses

In measuring the size of an object two edges must be located. If the
object size is sufficiently large or the signal to noise ratio is high enough

then with high probability the minimum cost path and the correct path through
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the trellis will coincide somewhere inside the object.
With this assumption the events EI = first edge mislocated by n polnts

and E. = second edge mislocated by n, points are independent [7]. Thus if

2 2
" is the number of sample points difference between the true width and the

estimated width

(12) n,=n, =M

P(n, = @ = ZP(n, = 0) P(n) = a=8)
B

where P(n2 = ) and P(nl= o= B) can be calculated from (10). The sum is over
all possible values of B that n, can assume such that n, = n o= O

If the noise varies with the signal fevel n, may not have zero mean. As
in the previous section the bias can probably te lgnored if the SNR is high
enough or calculated theoretically or found experimentally if necessary.

Unknown Levels

In the previous section we presented formulas for the probability of mis-
locating an edge by |n| points. This analysis assumed that the possible levels

a. and a. that of the process were known. In this section the probabillty of

1 2
error is calculated assumlng that the levels are not known a=prlorl,
A reasonable course of action in the case of unknown levels lIs to obtaln
"training'! samples of the gray levels characterizing the object of interest.
A A
These samples can be processed in some fashlon to produce estimates T and a,
A A
' o § a, = + d = +
of levels a; and a5 respectively uppose a, = a, €, and a, a, t e,
where €| and €, are normal random variabies with zero mean and variance 0?

A A
and cg, respectiveiy. (if a, and a, are large sample maximum 11kelihood

estimates of a and a, then the above model is accurate [8].)
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~
Let the correct path through the trellis by Y and the estimate be Y. In
this case the correct path is the one that places the edge in the correct
position cven though the levels (or helght) of the step may be incorrect. The
"signal space" diagram of Fig. 5 has been repeated in Fig. 6 with the addition
of a new point 8. 8 represents the output sequence corresponding to the true
edge location and step levels. In general, 8 will not lie in the plane

defined by Z, Y, Y. However, as before, only the projections of Y - Z and

>

~ Y_
Y - Z where Z=8+Non __-— will have any effect on the choice between
Y-

<] 1<

Y and Y.
Now Y=Y = Ah * (0,0,4001,1,1,0440,0) A = i-(al-az)

n I's

and Y-8 = h = (cl,el,.”.el.e:,,,cz..,“.r.z)u Thus the projection T~

of Y-8 on i will be a linear combination of El and €ye Since a linear
HY-YH
combination of normal r.v's is agaln normal the only information needed to

characterize T is its variance (it will have zero mean since el and 62 were

assumed to have zero mean) ci which can be calculated from knowledge of
2 2
Oy Ope 1

Again, by arguments similar to those in the previous sections the

1 and h.

la)
probability of declding Y over Y is the probability that the noise along the

”»
Y-Y axis exceeds -1:-'" - Tor equivalently probability that the sum of two normal

T
random variables with variances 02 and ot exceeds 'ZD
Tn
(13) =] Q(—-—Z-—T) and
2(c” + crt)

T

P(E ) = 2Q(——g—=s=)
(" 2(0:+ct)
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This result can be extended to pulse width accuracy as before. If
=M =N is the number of sample points of error In the width the estimate

then

Prin =a} = I Pr[nl=6] Pr(nzﬂa-B)
B

T A

where Pr(nl=8) = Qo"jgijrﬁ- Equation (13) shows that if the estimates a
2(c +0,)

and a, are such that of << 02 then the lack of a=-priorl knowledge about the

possible levels will have very little effect on the probability of mislocating

an edge.

Simulation Results

A pulse of width thrity sample points was generated and blurred by a
linear shift-invariant system with a Gausslan shaped Impulse response with a
standard deviation of one sample point. This blurred pulse was transformed by
Yy = 1,066 (log lk = 1.5.) + .2 where lk is the kil sample of the blurred
pulse. This transformatfon simulates the d=lcg E curve of film. Nolse of
standard deviation .lonl‘W3 vas added. The noisy blurred signal was then pro-
cessed to produce an estimate of the pulsz width, Several different SNR's
were used with one hundred width estimates obtalned at each SNR. The results
are shown in Figs, 6 and 7. The blas In the width estimate can be seen to
decrease with Increasing SNR as expected. The variance of the estimate can be
seen to decrease with Increasing SNR and appears to asymptotically approach

the Cramer-=Rao lower bound.
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DIGITAL STRAIGHT EDGES
G.Y. Tang and T.S. Huang
Studies of the digitization of a siright line have been made by Rosenfeld
[V], Freeman [2], Morse [3], Gaafar [4], Brons [5]. A set of rules has been
established to govern the digitization of an ideal straight line which can be
described by a first order mathematical equation. But, in the real world,
most edges which appear to be straight to our eyes do not fall into this cate-
gory. On the contrary, they suffered from noise, degradation, blurring, etc.
In this report, we are going to show some experimental results on real straight
edges and to compare them with the ideal case. A simple testing algorithm is
then developed to determine if a real edge is a straight one or not. The
application of the testing alqorithm can be found in various areas such as
syntactlc pattern recognltion, character recognition, scene analysls and ef-
ficient contour coding, etc. Our ultimate goal for this study is to use sy=
tactic method to aid us to detect edges in a noisy environment,
In the following, we are to use the word 'real' to refer to whatever is
on pictures obtained by practical imaging devices. The word 'ideal' refers to
the ideal case.

I. PROPERTIES OF AN IDEAL STRAIGHT LINE:

An intensive study of the properties that a digitization of a straight
line should have has been reported previously. A brief summary is given here.

(A) The Chord property, proposed by Rosenfeld, is a necessary and suffi-
cient condition for a digital arc to be straight.

(B) The digitization of any real curve can be expressed in terms of a
chain code [2]. The chain code of a straight line should obey the following
rules.

1) There are at most two different code elements differing by 1, modulo 8.
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2) One of these two codes occurs singly.
3) Successive occurrances of the singie element are as uniformly spaced
as possibie,

C) For an ideal straight iine with rational slope, the corresponding chain
code is a repetition of a certain period,

D) We can aiways find a rational siope to approximate a real slope so that
their chain codes are as close to each other as we want,

E) An ad hoc testing aigorithm has been proposed [3] to see if a given
chain code may come from a straight iine.
11, EXPERIMENT

The nice properties listed in the foregoing section are based on the
assumption that the iines are ideaily stralght, the digitization is noise-free
and the digitization scheme is weli defined [1], [2]. In the reai worid, where
a model with such é high order of idealism can hardly find many appilcatjons,
minor randomness corrupts the structures severeiy, The intention of our ex-
periment is to observe the code structures of real edges and to compare them
to the ideal case. Also we outline a new testing algorithm from our experi=
mentai resuits,

A set of 12 pictures has been taken by a standard Nikon F=2 camera with
35 mm film. A fiying=-spot scanner is used to discretize the picture into a
square matrix of size 256 by 256. The grey ieveis range from 0 to 255, A
simpie contour foiiower and a chain code encoder is used to obtaln the chain
codes on each picture. Only straight edges are on these 12 pictures. There
are totaily 30 straight edges.

A contour foliower is designed so that the output of the contour foliower
is the chain codes of the edge which it foliows., The input to the contour

foliower Is a window of size 3x3. We assume that the center of the window is



on the contour and that we know which of its eight neighbors is also on the
contour. The task of the contour follower is to find a point which is supposed
to be the next contour point among the eight neighbors around the center. Then
the window moves to and centers at that point. The direction of move is en-
coded by Freeman's method. Repeating the same procedure, we can obtain the
whole contour, The way to locate the next point from the eight neighbors of
the center is simply looking at the eight neighbors in counter-clockwise sense
starting with the neighbor already known on the contour. A thresholding tech-
nique is used to discriminate the two regions defining the contour.

Table 1 shows which ideal properties are violated by chains obtained from
real plictures,

The ideal edge is not what one finds in the images produced by real-life
imaging devices. There are several factors that degrade the edges that are
actually found. Two predominant ones are blurring, or defocusing, and ir-
regularities of the surface structure of the object. Besides, for the case of
straight edges, a slight concavity or convexity can be considered as another
kind of disturbance. The net effect of these disturbances of Freeman chain
code can be summarized as:

1) A third code element is introduced if there is a missing or spurious
lattice point, This third code element will occur together with the code
element which occurs singly., Figure 1 illustrates this.

2) A third run length is introduced if the missing or spurious lattice
point occurred at the beginning or at the end of each run. Fige 2 illustrates
this,

3) Other types of errors occur which cannot be characterized easily.

Fig. 3 shows us the test pictures,
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111, STRAIGHT LINE RECOGNITION

To recognize a real chalin code as a straight line is not straightforward
since we have no rigorous definitlon of what is a real straight edge. Here we
propose to employ a heuristic method to soive the problem of the recognition
of digital stralght lines.

The basic strategy of our approach is rather simple. We are attempting to
enclose a digital straight line by a straight band. If such a band with
reasonable bandwidth could be found for a given chain code, then we claim that
that chain code corresponds to a straight line., Mathematically, a straight

band is defined by an equality

Y = mX|<k

where m is the slope of the straight band and k is related to the bandwidth of
the straight band., Two parameters, m and k, are therefore to be determined
from a given chain code, We proceed as follows:

Step 1 = Check if there are only two code elements; one occurs singly,

Yes; go to Step 3
No; go to Step 2,

Step 2 = Correct all possible first kind of errors mentioned in the pre-
vious section. Then check if there are only two code elements left; one
occurs singly. If it is yes, then go to Step 3; otherwise do the following:

Calculate the percentage of the 3rd, 4th ... etc. code elements to the
total length of the chain code and the percentage of the second code elements
which should occur singly in ideal case but occurs in runs in this case to the
total number of the second code elements. Then compare these two percentages
to two preset thresholds. Once they are smaller than the thresholds, go to

Step 3; otherwise the chain code is rejected as a straight line.
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Step 3 = m is the ratio of the element which occurs singly to the total
number of lst and 2nd elements,

k is a subjective quantity. It relates to the noise level of the picture,
the sharpness of the edge and the resolution of the picture.

It seems that so far we have taken few advantages of the nice structural
regularities existed among ideal straight lines to aid us in developing test-
ing algorithm for the non-ideal case. A rather straightforward heuristic
method has been devised to further reduce the number of testing points., |t
is noted that the straight band is a geometrically convex set. So, only the
two ends of each run on the chain codes need to be tested. Furthermore, if we
apply a simple operation which is to replace each run by its run length and to
delete the code elements occurred singly, then the output of the operation
should obey the rule: only two code elements; one occurs singly, for the
ideal case. For the real chain code, we may apply the same operation itera-
tively to it until the output fails to follow the rule. We then use the
final one as a clue to break the initial input chain into several pieces of
line segments. Only the ends of each line segment are to be tested. An
example illustrating this follows:

A chain code from picture No. 7 in our expgriment is
c10101010 g cl1010101070i1001010 g 0o101010101

0101010101001010101010350101010010101010

A a
10101010101071006101010101010101710100 10101
A
01010101010101001010101010 1,
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The first output of our operation is: .
A A A
LI O T T T T T T T T O T T T 20 T T O N I N RO}
A A A

L I T T T T T T T T T O O T T 20 O B TR T O
The next output is:
11 12 8 10 8 9 5. It fails to follow the rule. So
we trace back and iocate the potential testing points (witha ) on each gen=
eration. The coordinates of the testing points with respect to the initium
are then (22,11), (49,24), (68,33), (90,44), (119,53), (131,63).

Table 2 shows the result of applying the foregoing method to test 17
chain codes obtained in our experiment. The '"MIN THRESHOLD" means the small=-
est k value we have to choose in order to report the edges straight. Also we
applied Morse's algorithm to test these real chain code. It does not work as well.
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Only two code elements

One of the two code elements occurs singly
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The runs of the run lengths can be of at most two
run lengths: one of which occurs singly
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Table 1. Comparison of real cases and ideal case.
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Line No, Length Mir. Threshold MORSE
3-1 147 «795 NO
3-2 49 755 NO
3-3 54 .833 NO
3-4 58 o724 NO
b=-1 82 1.329 NO
b-2 47 b0k YES
4-3 b2 1.524 NO
b-4 127 1.055 NO
5 238 1.345 NO
6 237 1.456 NO
7 130 U35 YES
8 209 1.004 NO
9-1 85 1.17 NO
9-2 245 «942 NO
10-1 147 1.258 NO
10-2 ko «900 NO
11-2 181 1.127 NO

Table 2 The result of the
with Morse algorit

proposed method in comparison

hm,
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perfect ome:
X=X=X=X
X=X=X=X
X=X=-X=-X
CO0CTOOCOTOOO
X=X=X=X

a spuriocus poimt:
X X-X=X=-X

X=X=X=2X

00T00OCOTOOO0

a missing poimts

X=X=X=-X
X=- X=X

Xe=X=X=-X=X

oCOO0ONOOINOOO

B Fig. 2 Missimg or spuricus poimts occured at the
ends of a rum
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Figure 3 Examples of test pictures
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Figure 3 Examples of test pictures
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IMAGE STRUCTURE: SYNTACTIC SCENE ANALYSIS
K. S. Fu and R, Y, Li

The essential problem in our research on the syntactic pattern recognition
of highways and rivers is really to find a grammar that will describe well
these classes of interest. |f the physical shape of the class under consider=
ation is completely known and fixed, like printed English character; we can
immediate!y write down the syntactic rules to describe its structure. Since
this is not quite true in our case, the construction of grammatical rules has
to be based on informations obtained from a set of sample patterns known to
come from that class. Hopefully, this set of inferred rules should be able to
describe and predict other sample patterns which are of the similar nature as
the original training samples and presumably in the same class. A basic ap-
proach of grammatical inferrence problem is to construct a grammar by identify-
ing the syntactic structures of the known string and any possible recursiveness
that might happen. There are three steps:

(1) Try to discover the syntactic structure of the given string by looking for
repetition and dependent relationships.

(2) Decide what sublanguages make up the language and generate non-terminals
for e...h sublanguages.

(3) Combine equivalent nonterminals which have aimost the same subianguage and
determine the appropriate relationships among sublanguages.

One practical method to learn the syntactic structures of the given pictures
is to use 2 semantic teacher to learn the meaningful norterminals one level at
a time [1]. To start the inferrence process, we first find the types of term-
inals or primitives that will fit the subparts of the picture pattern for a
given window size. After this initial extraction process, we have to decide

the most probable combinations of primitives which occur as neighbors of each
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other in the set of observed'trainlng samples. These combinations are then
applied to the training data set to test their recognition effectiveness. When
the results appear to be satisfactory after some additions and deletions of the
combination rules, we can choose this set of rules to represent the training
samples. The appropriate grammar can then be formulated by using these rules.
In our present case, we choose the tree grammar because of Its easiness to
describe these rules. A tree recognition program based on this tree grammar
can then be used to recognize the training data set of Lafayette and a test
data set, that of Grand Rapids, Michigan. Figures (1), (2), and (3) contain
the results from Lafayette experiment. Other preliminary results from Grand

Rapids can be found in reference [3].

References

[1] Brayer, J.M. and K.S. Fu, "Web grammar and its application to pattern
recognition," TR-EE 75-1, Purdue University, W. Lafayette, In 1975,

{2] Evans, T.G., “Grammatical inferrence techniques in pattern analysis",
Software Engineering, Vol. 2, T.J. Tou (ed.), Academic Press, 1971.

(3] i, R.Y. and K.S. Fu, "Tree system approach for LANDSAT data interpreta~
tion', Purdue Symposium on machine process ing of remotely-sensed data,
June 29 - July 1, 1976.
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SYNTACTIC SCENE SEGMENTATION
K. S. Fu and J. Keng
A syntactic approach to scene segmentation has been investigated which
invoives two leveis of processing. The first ievei, referred to as the

transformation process, consists of five steps referred to as (1) threshoid

finding, (2) horizontai processing, (3) vertical processing, (4) logic
integrating, and (5) iine smoothing. The second levei, which is the actual
syntactic anaiysis, requires inference of a tree grammar to describe the
boundaries of homogeneous regions. The tree grammar is then impiemented in a
parser which traces the region boundaries.

The approach has been implemented and initial experiments on multi-
spectral remote sensing imagery are being conducted. Further detaii and
experirmental results wiil follow.

Working on the problem of picture segmentation through a syntactic
approach, we feel that the evaiuation of the earth resources is very useful.
So, the multispectrai remotely sensed picture is chosen as data.

There are two ievels of processing for the syntactic picture segmenta=
tion, first, the transformation process and, second, the tree grammar analysis.
The first level consists of five sub-processes, threshold finding, horizontal
processing, verticai processing, iogic integrating, line smoothing. The
process of tree grammar anaiysis utilizes the correspont g parser from the
inferred tree grammars to process the transformed picture. Then a picture is

segmented.
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Syntactic Picture Segmentation

First leve] - transformation processing

(1) Threshold finding
From a digitized Picture, training regions are located from every

homogeneouys Parts of the picture, then the differences between two of

selected as 3 threshold,

(2) Horizontal Processing

xl,xz,tg.,xn. The number p here represents the number of channels to

be chosen, A point of the Space is by definition an ordered n-tuple

levels of (1,1) and (1,2)., 1f the distance s smaller than threshold,
then set zerces to (1,1) and (1,2). Then, (1,1) and (1,3) are compared,
if the distance is greater than threshold. A one is put to (1,3) and
the same operations start from (1,4). The operations on second row
follow the Same pattern,
(3) Vertical processing

The operations are the same as horizonta) Processing except
it goes vertically instead of horizontally.
(4) Logic integrating

The logic variable of horizontal Processing is named as H and V
for the vertical Processing, The logic integrating Process achieves

the integration through Boolean algebra V+H,
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(5) Line smoothing

The line smoothing algorithm connects the discontinuity of the
lines. As for this part, lots of line smoothing algorithms can be
devised,

b. Second level - tree grammar analysis

A tree grammar is inferred to describe the boundaries of the
homogeneous regions. The tree grammar is used to trace the boundaries
and reject the unnecessary boundary parts. Finally a segmented picture
is received from the (two level) syntactic method.

The scheme of syntactic picture segmentation has been implemented and
the experiments have been conducted on the multispectral remotely sensed
pictures of an area in the State of Indiana. The plctures were taken on
August 13, 1971 and stored in the computer |BM 360/67 of the Laboratory for
Applications of Remote Sensing in West Lafayette, Indiana.

The result of a picture 96x96 area is shown in Fig. 1. For the purpose
of cbmparlng processing time and accuracy, a result of statistical segmenta-
tion by clustering is also provided in Fig. 2. The computer processing time
on 1BM 360/67 for the same area of the picture, the syntactic picture seg=
mentation takes about 36 seconds and the clustering technique requires 180
seconds.

The area of column (105-132) and row (444=450) in Fig. 1, shows lots of
boundary points. From a survey of the ground truth (Fig. 3), it points out
the reason. Because this area is pasture and bare soll compound area. So
lots of boundary between these two objects of the compound area are located.
A classified result of the same area is also provided in Fig. 4. In the

region column (90-100), row (480-488) in the syntactic segmentation result
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shows a segment which corresponds to the same location in the classified

result, But the clustering result can not segment it well,
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The syntactic picture segmentation result
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Figure 3 The ground truth of the area of Fig.
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STATISTICAL DEPENDENCY MODELS OF CONTEXT
P. H. Swain and T. S. Yu

In the previous quarterly report, we described a model for incorporating
context in the image analysis process through compound decision theory.
Briefly, under a fairly stringent set of assumptions a Bayesian strategy is
employed which classifies a point into one of a candidate set of classes based
on the multispectral data from the point itself and the data from either the
neighboring four or neighboring eight points. Figure 1 shows the results of
applying this approach for classifying a small set of LANDSAT multispectral
scanner data. A block of imagery 128x128 pixels was classified using the
“simple” rule (no context), with the k-neighbor rule, and with the 8-neighbor
rule. Samples of 900 pixels (30x30) were selected exhibiting a range of
pointwise accuries and the corresponding accuracies obtained using the context-
incorporating rules were tabulated together with the corresponding classifica-
tion times. The results of the experiment show, as expected, the classifier
using context is consistently better than the classifier which makes each
decision based on data from the individual points. Furthermore, the ''8-
neighbor classifier" is consistently better than the “k-neighbor classifier',

However, the price paid in terms of computation time is substantial. To
justify general use of this approach we shall have to demonstrate (a) its
performance potential over a sufficiently broad range of analysis problems,
and (b) a means of implementation (special purpose hardware, software, or a
combination thereof) which is efficient enough to provide results on a cost-

effective basis.
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IMAGE NOISE REDUCTION
M. Y. Yoo and T. S. Huang

l. INTRODUCTION

There have been many attempts to enhzance images degraded by detector noise
and imperfection of the imaging system [1-4]. In most cases we encounter two
contradicting requirements: reducing the noise as much as possible, and retain-
ing edge sharpness. The only reasonable answer Is a compromise between the
two. We will approach this problem using the synthetic highs technique where
we can treat the smoothly varying part and the sharply changing boundaries
separately and we may enjoy some freedom in compromising the two situations
[5]. The performances of the system will be compared with several available
heuristic approaches [6], [7].

i1, IMAGE ENHANCEMENT SYSTEMS

2,1 Synthetic Highs Technique

This technique was proposed by Schreiber [8) and was used in two dimen-
sional contour coding for data compression by Graham [9). The basic idea of
this technique is to decompose the image into two major elements (siowly
varying ""lows' and synthetic highs" which are mostly boundaries and textured
parts) such that the recombination of the two elements results in the original
again.

The technique was described in detail in previous reports and in Graham
[9], and we are not going to repeat that here again. To use the technique for
noise reduction, we need a noise reduction filter between the edge detector
and the reconstruction filter. So we need an acceptable boundary detector for
noisy images. Tang's [10] or the following simple edge detector may be

used :

b
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r“__‘_*‘“"+ Low Pass Filter

Noisy px,y)
Picture +)——
____.______,.
p'(le) ﬂ
/I
tdge Detector Noise Reduction Reconstruction /d/
Gradient or | Filter Filter
Laplacian /
Reconstructed
Picture

Figure 1 Synthetic highs technique

First we calculate the grey level differences in four different direc-

tions; horizontal, vertical, diagonal 1 (45°%), and diagonal 2 (135°) as

. _ |G(x,y=Ay) - G(x,y+A - 16(x=4x,y) = G (x+Ax,y)
forz = Géx,v-KyHG%x,wa; S P PR Y o e

diag 1 = 16 {x=dx, y+Ay) - G (x+Ax,y=Ay) |
G (x~dx,y+By) + G(x+2x,y=Ry)

follows:

16 (x=Ax,y=y) = G (x+Ax,y+4y) |
G(x-Ax,y-Ay)4-G(X+Ax,y+Ay)

diag 2 =

Whenever one of the following conditions holds we decide G(x,y) is on the

boundary.

i) Horz g_el and Vert < 62

ii) Horz < 6, and Vert > 8

2
iii) diag 1 > 8

]

and diag 2 < 6

1 2

iv) diag 2 < @, and diag 2 > 8

2 1
where e', 82 (0 g_e,, 92 < 1) are preassigned threshold values. Typical

6, are 0.2, 0.1,

values of 6', 2
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2.2 Median Filter

We use an nxn (n is odd) window to scan the noisy image and replace the
grey level of the center by the median grey ievel within the window. Pratt
[6] used one-dimensionai window to remove impulse noise. Resolution of the
filtered image is highly dependeht upon the size of the window and appropriate
size should be chosen to retain reasonable bourdaries. 3x3 and 5x5 windows
were used for our experiment.

2.3 Variable Width Filter

First we take the gradient of the noisy image and divide the absolute
gradient level into four different intervals. We assign the smoothing filter
of an approprlate size to each interval such that the lower the absolute
gradient level is, the larger the duration of the fllters impulse response is.
One dimensional Gaussian and median filters can be used in the horizontal and
the vertical directions sequentially,

The basic idea of this approach is that we retain more boundaries where
the absolute gradient level is high by using narrow smoothing filters and
heavlly smooth out slowly varylng part by wide smoothing filters. Uniformr or
non-uniform subdivision of gradient levels may be used depending upon the
distribution of gradient levels. The sizes of the filters used are0, 3,5, 7.

2.4 Noise Cheating Technique

This technique is a combination of two averagings with different window
sizes. We average the noisy image using an mxm window and average the noisy
picture again by an nxn (n > m) window. In the original paper [7] the
authors quantize grey levels of ''severely' averaged imagesusing a quantum
step that is at least four times the standard deviation of the averaged
picture. But if the standard deviation of the averaged picture is large

enough, the quantizing process wipes out everything and this really happened

wal
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in our case. S0 we may have to skip the quantizing step depending upon the
size of the standard deviation. After averaging the noisy Image with two
different sizes of windows we replace each grey level in the "ightly" averaged
image by the closest grey level among the corresponding eight surrounding

image points in the “'severely" averaged image.

The idea is that we retain the resolution of the '"ightly" averaged
picture, while we enjoy the reduction of noise level of the lgeverel y" averaged
image. The combining scheme is a kind of discrete maximum 1ikelihood approach.
m=2, n=3 were used for the experiment.

111, EXPERIMENTAL RESULTS AND CONCLUSION

White Gaussian noise was added to generate a 10 dB (variance of signal/
variance of noise) noisy picture of size 256x256. The bandwidth of the low
pass Gaussian filter in synthetic highs system is 0.116. The original noise=
less picture is shown in Fig. 2 and the 10 dB noisy picture and Mows'' of the
noisy in Fige 3 and Fig. B, respectively. Figure 5 shows the noise reduction
filter used in synthetic highs system. But this filter should be extended by
a 3x3 window so as to pass both the positive and the negative parts of boun-
daries detected by Laplacian or gradient edge detector, otherwise ve lose
resolution significantly. Reconstructed pictures are given in Fig. 6 and
Fige 7. Outputs of the two-dimensional median filter are shown in Fig. 8 and
Fige 9. In 5x5 median filtered picture we lost resolution quite a bit.
Median filters seem to be very effective for removing impulse errors (all dark
spots have gone away in both outputs), but still retain Gaussian noises at an
unpleasant level. Variable width Gaussian filters are truncated at 2 X
standard deviation.

A one-dimensional filter was used sequentially in horizontal and vertical

directions and when we apply the filter in the vertical direction we use da’.a
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already averaged in the horizontal direction. This may cause more reduction
of noise but resolution is lost also. Actually we didn't smooth out at the

top interval where the absolute gradient is highest. (Filter size was specified
by 0 in section 2.3.) Comparing with the variable width Gaussian filter,
the performance of the variable width median filter is very poor. In the noise
cheating technique we first averaged the noisy picture by 2x2 window and re-
placed the grey levels at 4 picture points in the window by the averaged level.
We did the same thing with 3x3 window and eliminated isolated picture blocks
(Note: 3x3 window will have the same grey level after averaging) by simply
replacing the center grey level by the surrounding grey levels. Since the
whole block (2x2,3x3) has the same grey level, the output of the noise cheating
technique has lots of square blocks. The performance of this technique seems
the worst. The two-dimensional median fiiter is most economical and easiest

to apply but the synthetic highs system gives the best result although it

is most costly,

Some of the techniques can be modified for better performance. For
example, we may use the noise reduction filter used in the synthetic highs
system for variable width Gaussian or median filter and we may use moving 3x3
overlapping window replace the Center grey level by the averaged level rather
than assigning the same grey level to the whole block. Finally, we emphasize
that the performance of noise reduction techniques depends upon the type of
noises involved.
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Figure 2 The original picture

Figure 3 Noisy picture S/N=10dB
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Figure 6 Reconstructed picture

Laplacian synthetic
highs used

Figure 7 Reconstructed picture
Gradient synthetic
highs used
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Figure 10 Reconstructed plctume
Variable width Gaussiam
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Figure Tl Recomstructed picture
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Figure 12 Reconstructed picture
Variable width median
filter uniform
quantization used

Figure 13 Reconstructed picture
Variable width median
filter non-uniform
quantization used
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Figure 14 Reconstructed picture
Noise cheating technique
2x2 and 3x3 windows used
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TWO-DIMENS IONAL DIGITAL RECURSIVE FILTERS AND THEIR
APPLICATION TO IMAGE PROCESSING

Brian 0'Connnr and T.S. Huang

Two dimensional digital recursive filters have the potential of saving
computer time and storage in the processing of large two dimensicnal arrays such
as images. In our research we are concerned with their design and their appli-
cation to images. The desired processing to be performed on an image can gen-
erally be described in the frequency domain. In two dimensional filter design
the filter coefficients are found which best approximate this desirea frequency
response, while at the same time guaranteeing stability.

Several possible design approaches exist. One relies on nonlinear optimi=-
zation techniques to minimize the & naorm of the difference between the desired
magnitude or group delay response and the filter response [1,2]. These tech-
niques can be modified to guarantee stability, However, numerical problems
arise with nonlinear optimization techniques, namely very large amounts of
computation, sensitivity to starting points, and the possibility of converging
to a local rather than global minimum. !n addition, it is necessary to check
stability of the designed fiiter at each iteration of the algorithm. However,
a recently proposed method has eliminated need for the stability tests [3].
Another approach is based on an algorithm which allows the designer to specify
an arbitrary magnitude-squared characteristic which is approximated optimally
in a weighted Chebyshev (minimax} sense. Here, the optimization procedure can
be formulated as a linear programming problem and tne filter coefficients can
be calculated using the two-dimensiona} discrete Hilbert transform to approxi-
mately factor the two-dimensional magnitude-square frequency response [(4].
There are two problems in using this algorithm, The first is that fairly

large amounts of computer time are needed to cesign filters. Secondly, the
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factorization of magnitude-square function to obtain a filter implementation con-
tains an infinite number of terms and hence truncation is necessary,

Generally, the nonlinear optimization techniques require that the fiiter
consist of first and second order sections connected in cascade. This cascade
form has many advantages over the direct form [i]. In our research we are in-
vestigating the approximation problem, i.e., how weil can a cascade of first
and second order sections approximate an arbitrary frequency response.

Another design approach is to find fiiter coefficients which approximate
3 desired frequency response without adding the stability constraint; then, if
the fiiter is unstabie, stabifize it so that the resulting fiiter has approxi=-
mately the same frequency response. Severai stabilization methods exist., The
first was proposed by Shanks [5]. It stabiiizes an unstable fiiter by finding
its double planar ifeast squares inverse (PLSI). Untii recently the PLS| of a
fiiter was assumed to be aiways stabie. However, a speciai counter exampie has
been constructed by Genin and Kamp where they find a 2x2 PLSi of a bxh array
(6]. It is stili an open question whether a PLS| of the same size as the input
array is stable. Jury [7] has proved this for the speclal cases of 3x2 and 2x3.
The doubie PLSi of an array wiii produce a fiiter array whose magnltude response
approximates that of the unstabie fiiter. However, in many applications the
approximation is not adequate. in our work we have found an example where the
double PLSI caicuiated by Read and Treitei is unstable. But no ciaims on find-
ing a significant counter example will be made unti} Read and Treitei's [8]
caicuiation of PLSI can be checked.

Another approach stabiiizes an array by developing a two-dimensional dis-
crete Hiibert transform to calculate the anaiytic phase function from the mag-
nitude-squared frequency response. The method accompiishes stabilization with

fittle accompanying distortion of its anpiitude spectrum, Severai deveiopments
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of the discrete Hilbert transform exist. Read and Treitel [8] generalized it
to two dimensions by a direct extension of the one dimensional discrete case.
The amplitude spectrum of the stabilized filter more closely approximates the
desired magritude than the double PLSI filter., However, not all filters pro-~
duced by this method are stable. An example of this was given in their paper
and we have found many more. Another method relies on discretizing the con-
tinuous two-dimensional Hilbert transform to obtain a two-dimensional discrete
Hilbert transform. This has been derived by Dudgeon [9] and we have formulated
and programmed a special case, Preliminary results seem to indicate that this
method does produce stable filters, but the approximated amplitude is notable
distorted.

We have been studying a third method which either employs the cepstrum or
complex cepstrum. The study was motivated by work done by Ekstrom and Woods
[10] on two dimensional spectral factorization. The inverse cepstrum of the
first quandrant of the autocorrelated unstable filter's cepstrum is windowed
to give a stable filter whose frequency response is close to that of the un-
stable filter. Preliminary results show that even though stability is not
quaranteed the resulting filters are usually stable. This method can also be
used to test stability of any two-dimensional recursive filter. The original
filter is stable if the calculated array is equal to the original array. Be-
cause the FFT is used the correspordence is only approximate and some equality
measurement must be used to ascertain stability. Through experimentation we
found that for 3x3 arrays the filter is stable if the mean square difference
between input and output arrays is less than .0000043. (16x16 FFT were used.)

Another possible way of checking stability and stabilizing unstable
filters is to work with the complex [12] cepstrum of the filter array. By

oroperly processing the cepstrum we can obtain arrays which are nonzero
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in certain distinguished regions in the (Z', 22) Plane, and thus, depending on the
the type of filter, guaranteed to be stability, Many problems exist in one-
dimensional cepstral analysis and they are increased in two dimensions. A two
dimensiona) complex cepstrum program has been written using a modification of
@ new phase unwrapping algorithm which was developed by Tribolet [11]. Details
about the theory and Implementation of two-dimensional cepstrial analysis will
be given in the next report,
Future work will include a detailed analysis of two-dimensional cepstral
techniques applied to filter design and stabilization,
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COMPARISON OF THE PROJECTION METHOD WITH SINGULAR
VALUE DECOMPOSITION

S.P. Berger and 'T.S. Huang

The purpose of the work has been to evaluate the relative merits of the
projection method of image restoration as compared with the singular value de-
composlition (SVD) approach.

The projection algorithm is an iterative method of solving a set of linear
equations, where the equations are the discrete representation of the degrada-
tion process. The algorithm can incorporate a priori information. It has been
shown to yleld effective results for various types of degradation, including
space-variant distortlons,

The SVD approach has been used successfully in image restoration. It in-
volves the treatment of the degradation in matrix form. By applicaticn of a
pseudo-Inverse matrix, the restoration is hopefully achieved.

Both approaches are limited by the effects of noise. The required number
of iterations in the projection method and the number of terms utilized with
SVD, are determined subjectively. The effects of noise increase with the
number of terms and the number of iterations, and tend to overshadow the
restoration process.

In the actual implementation of the SVD, difficulties with this approach
have arisen. The amount of computer time required for the calculation of
eigenvalues and eigenvectors can be prohibitive for large degradation matrices.
Also, perhaps to the size of the matrix, the actual implementation has yielded
faulty results. The success of the method depends heavily on the type of
degradation that is effected on the border of the image. Minor changes in the
form of the degradation matrix seem to create major problems in the operation
of the computer implementation. The next report will contain at least a

partial resolution of these difficulties.
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FOURIER DESCRIPTORS
T. Wallace and P.A. Wintz

The Fourler descriptor (FD) Is one method of describing the shape of a
planar figure. Given a figure in the complex plane, the contour can be iraced,
ylelding a complex function of time, |f the contour is traced repeatedly, the
periodic function which results can be expressed in a Fourier series. Granlund
[1] defines the FD of a contour as the coefficients of this Fourier series.

To implement this method of shape description, it is necessary to sample
the contour at a finite number of points. Since the discrete Fourier transform
of a sequence glves us the values of the Fourier series coefficients of the
sequence, assuming it to be periodic, using an FFT algorithm satisfies the
definition above. The computational advantages of the FFT are well known.

The goal of this work is to classify the shapes of objects using their
Fourler descriptors. The operations of rotation, scaling, and moving the
starting point are easily implemented in the frequency domain by simple arith-
metic on the frequency domain coefficients. while shapes may be compared in
the space domain, the procedures required to adjust their size and orientation
are computationally very expensive. Normally an [terative type of algorithm is
employed, which searches for an optimum match between the unknown shape and the
test set.

The goal of classification using Fourier descriptors is to develop an
algorithm which will normalize the size and orientation of a shape before any
comparisons to test shapes are made. If this can be accomplished, the classi=
fication process becomes a simple clustering problem with no iterative searches
to contend with.

in our last quarterly report, the FD normalization problem was dis-

cussed, and the results of an experiment presented, 1T was shown that if the
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contours under investigation were bilateraily symmetric, much iess information
was contained In the phases of the FD than in the magnitudes. The validity of
ciassifying contours using the magnitudes of their FD's was demonstrated by
classifying 18 airplane contours using this method. The Euclidean distance
measure was used, and the distances between FDs proved to correiate weil with
the actual differences between the contours.

The goal of this study of Fourier descriptors is to eventuaily appiy this
method to contours traced using actual photographic data., To simulate this
sltuation, an experiment was conducted using 20 aircraft contours digitized to
two different resolutions, 128x128, and 64x64. The high resolution versions
were taken to be accurate representations, and the iower resofution versions
were assumed to be corrupted by nolse and quantization error. Examination of
representative contours (Figs. i=6) show that the 128x128 contours are qulte
good representations, while the 64x6h show significant distortion of the
smalier Important features. This experiment was performed in order to test
various distance measures, as weil as to test suitabiiity of the algorithm for
use with actual photographic data.

While the experiment described in [1] was useful in demonstrating the
general validity of classifying contours using distances between normai ized
Fourier descriptors (NFDS), a comparison of various distance measures was
difficuit due to lack of a definitive measure of simifarity among the contours
themseives, This obstacie was overcome by using the different resolution
versions of the same planes.

The mean square criterion used previousiy was compared to an absolute
value criterion., The resuits using the absolute vaiue criterion were slightly
better, as every 64x64 contour was correctly identified, whereas using the

mean square criterion, only 19 out of 20 were correctiy identified,
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A simple application of Parseval's theorem shows that the mean square
criterion in the frequency domain corresponds to a sum of the point by point
mean square error in the time domain, There are some difficulties in mathe-
matically relating the frequency domain absolute value criterion to the con-
tours in the time domain. However, it is easy to compare the two criteria on
a qualitative basis.

It is obvious that the absolute value measure will be more tolerant of
one or two large coefficient differences than the mean square measure. Using
either method, the largest coefficients will account for most of the distance
measured. Accordingly, we should consider the possibility of large variations
between coefficients of large expected value, which turn out to be the lowest
frequency ones.

The second largest coefficient for each airplane FD is A(-3). The effects
of varying this coefficient are to change the width of both the wings and the
body of the plane. Smaller detail such as engine shape is virtually unaffect-
cd. Another coefficient of large expected value is A(~1). As discussed in
[1], this coefficient describes the length to wingspan ratio of an airplane
contour. More generally, varying A(~1) tends to elongate any contour. Again,
the smaller detail is not greatly changed.

In summary, the absolute value criterion should tolerate more differences
in gross structure of the contour, such as elongatedness or thickness to
length ratio, while emphasizing variations in smaller detail. It seems likely
that the absolute value measure might correspond more clearly to the differ-
ences which human observers find important than does the mean square criterion.

The classifications using the two methods were too similar to offer a
definitive comparison of the two classification methods. However, the success

of the experiment shows that we are ready to apply the FD algorithm to contours
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extracted from actual photographic data. We plan to interface the BLOB con-
tour tracing algorithm to the FD program as the next step in this research.
The magnjtude vs. phase information question will also be examined in the

context of developing a normalization procedure which preserves all of the

information contained in the contour,
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FiLTERING TO REMOVE CLOUD COVER IN SATELLIiTE iMAGERY
0. R. Mlitchell and P. L. Chen

i. INTRODUCTION

This recent work is a continuation of the previous report ''Satellite
Imagery Noise Removal" [1]. We are using 3~dImenslonal homomorphic filtering
techniques to remove cloud cover In LANDSAT data.

In the previous filtering results the nolse power spectrum was estimated
by classifying each region of the nolsy plcture according to *he level of nolse
present using the multispectral data analysis software system developed by
Lars. These filtering results were not satisfactory due to the spectral
indIstinctability of clouds and concrates.

it may also prove Impractical to use a multlspectral classl¢lcatlon pro-
gram to find the nolse statistlcs. Instead it may be posslble to use a
generalized cloud power spectrum derlved by averaglng many sample spectrums
together.

1. INDIRECT ESTIMATION OF NOiSE STATISTICS

The easiest way to estimate the general power spectrum of cloud Is done
by using data taken over water where the reflectlon Is almost constant. in
thls case, the transformed scanner Image (L 1s sun 1lumination, t 1s cloud

transmission, r Is ground reflectlon, and s Is the recelved scanner Image)
Log [L = s(x,y)] = Log L + Log t(x,y) + Log [L - ar(x,y)]

is reduced to
Log [L - s(x,¥)] = Log [L - ar(x,y)] + Kk

where K is a constant, and the power spectrum obtained Is that of nolse except

for the d.c. (0,0) frequency point.
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This power spectrum should be circularly symmetric since clouds have no
preferred orientation and should conslst mainly of low spatial frequency com-
ponents since clouds are relatively large and smooth functions compared to
ground reflectance.

111, THREE DIMENSIONAL FILTERING

The real potentlal In the cloud flltering process is Incorporating a
third dimension, the spectral channels, forming a three dimenslonal reflection
r(x,,z) and cloud transmission t(x,y,z). The generalized linear filter thus
employed Is three dimensional H(u,v,p) using three frequencies (two spatial
and one spectral). Although there are only four points in the spectral
dimension for LANDSAT data, the method has good promise, because most clouds
follow a fixed response in the spectral dimension: cloud transmisslon
Increases with wavelength In a predictable fashion. When this Information Is
Incorporated Into the fllter (by means of the 3-D power spectrum) image
variations which have the cloud spectral response are filtered out and image
varlations which do not follow * * expected response of clouds in the spectral
dimension are left In. The three dimensional filter, therefore, tends to
reject all varlatlons that are low frequency In the spatlal dimension and
follow the cloud spectrai resporse In the third dimenslon.

Figures 1 to 4 are the 3-D power spectrum obtalned from averaging the
spectrum from three separate 64x64 regions of clouds over water. The ordinate
is a log scale, Flgure 1 represents the spectral d.c. slice (sum of all
four spectrail points), Flg. 2 represents the ‘one cycle per spectral band''
slice, etc. One Interesting observation we have made is that most of the
cloud information is contalned In slice | only and that information in sllices
2, 3, and 4 (other than the d.c. polnt in each) represent ground reflectance

Information and should be left in the filtered output.
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Figures 5 to 8 are the 3-D filter functlons obtained for one particular
6Lx6h section of the image taken over land. The general cloud spectrum was
normal ized so that it fell below the spectrum of ''signal plus nolse' and
was then subtracted from it for the signal spectrum estimate. Note the filter
tends to attenuate low frequencles In sllice one but leaves them In slices 2
through k.

Figure 9 shows the composite flltered for 21 6ux6k blocks of LANDSAT data
scanned over the Chicago area on a somewhat cloudy day.

IV. CONCLUSIONS

Three dimensional filtering of multispectral data to remove light cloud
cover is a distinct possibllity.

tn Fig. 9 the filtered picture shows more detall than the original cloudy
one. Lake boundarles and hlghways have clearer appearances In the filtered
pictures.

The model of the cloud distortion needs to be refined based on the
results of filtering using the simple mode! presented in the previous report.
It may be necessary to consider convolutional effects of cloud cover as well
as multiplicative effects. The change In multlspectral classiflication
accuracy after filtering may be a sultable measure of the performance of such

homomorphic filter.
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Figure 9(a) (Left) 3-D filtered output (channel 3)
(Right) Original Landsat data (channel 3)

Figure 9(b) (Left) 3-D filtered output (channel 4)
(Right) Original Landsat data (channel &)
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Data Printer
True-Data
Tektronix
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FACILITIES

Description

“Super-Bee'' Terminals

1silent 700" Terminals

industry standard magnetic tape system;

2, 9-track and 1, 7-track drives; one each
NRZ| and phase-encoded formatters/controllers

pual=drive DECtape unit

RPO3 disk drive (40 million characters)

96K-word auxiliary memory system
(64K bought by ARPA, 32K by NASA)

Electrostatic matrix printer

Color picture display

132 column, 600 L.P.M. line printer
Punched card reader

Mode! 4010, graphics display

PDP-11/45 computer system; system Includes:
32K memory

FPP-11 floating point processor (NSF money)
H960 extension mounting cabinet

3 - small peripheral mountings blocks (DD-11)
1 UNIBUS repeater/expander

DH11, 16-1ine terminal mul tiplexor

KW11=-p programmed clock

UANTS'' = type PDP-11/IMP interface

Our POP=11/45 is currently operating under the UNIX system.
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